Breaking the barriers: microbial effector molecules subvert plant immunity.
نویسندگان
چکیده
Adaptation to specialized environments allows microorganisms to inhabit an enormous variety of ecological niches. Growth inside plant tissues is a niche offering a constant nutrient supply, but to access this niche, plant defense mechanisms ranging from passive barriers to induced defense reactions have to be overcome. Pathogens have to break several, if not all, of these barriers. For this purpose, they secrete effector molecules into plant cells to interfere with individual defense responses. Plant defense is organized in multiple layers, and therefore the action of effectors likely follows this same order, leading to a hierarchy in effector orchestration. In this review we summarize the latest findings regarding the level at which effectors manipulate plant immunity. Particular attention is given to those effectors whose mechanism of action is known. Additionally, we compare methods to identify and characterize effector molecules.
منابع مشابه
A Plethora of Virulence Strategies Hidden Behind Nuclear Targeting of Microbial Effectors
Plant immune responses depend on the ability to couple rapid recognition of the invading microbe to an efficient response. During evolution, plant pathogens have acquired the ability to deliver effector molecules inside host cells in order to manipulate cellular and molecular processes and establish pathogenicity. Following translocation into plant cells, microbial effectors may be addressed to...
متن کاملThe role of microRNAs and phytohormones in plant immune system
The plant-pathogen interaction is a multifactor process that may lead to resistance or susceptible responses of plant to pathogens. During the arms race between plant and pathogens, various biochemical, molecular and physiological events are triggered in plant cells such as ROS signaling, hormone activation and gene expression reprogramming. In plants, microRNAs (miRNAs) are key post-transcript...
متن کاملPlant immunity triggered by microbial molecular signatures.
Pathogen/microbe-associated molecular patterns (PAMPs/MAMPs) are recognized by host cell surface-localized pattern-recognition receptors (PRRs) to activate plant immunity. PAMP-triggered immunity (PTI) constitutes the first layer of plant immunity that restricts pathogen proliferation. PTI signaling components often are targeted by various Pseudomonas syringae virulence effector proteins, resul...
متن کاملOomycetes, effectors, and all that jazz.
Plant pathogenic oomycetes secrete a diverse repertoire of effector proteins that modulate host innate immunity and enable parasitic infection. Understanding how effectors evolve, translocate and traffic inside host cells, and perturb host processes are major themes in the study of oomycete-plant interactions. The last year has seen important progress in the study of oomycete effectors with, no...
متن کاملE3 ubiquitin-ligases and their target proteins during the regulation of plant innate immunity
Reversible protein ubiquitination plays a crucial role during the regulation of plant immune signaling. E3 ubiquitin (Ub)-ligase enzymes, which are classified into different families depending on their structural and functional features, confer the specificity of substrate and are the best characterized components of the ubiquitination cascade. E3 Ub-ligases of different families have been show...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Annual review of phytopathology
دوره 46 شماره
صفحات -
تاریخ انتشار 2008